A Novel Self-Paced Model for Teaching Programming

Jeff Offutt, Paul Ammann, Kinga Dobolyi, Chris Kauffman, Jaime Lester,
Upsorn Praphamontripong, Huzefa Rangwala, Sanjeev Setia, Pearl Wang,
and Liz White
George Mason University, Fairfax VA, USA

{ offutt,pammann,kdobolyi,jlester2,uprapham,setia,pwang,white } @ gmu.edu {kauffman,rangwala} @cs.gmu.edu

ABSTRACT

The Self-Paced Learning Increases Retention and Capacity
(SPARC) project is responding to the well-documented surge
in CS enrollment by creating a self-paced learning environ-
ment that blends online learning, automated assessment, col-
laborative practice, and peer-supported learning. SPARC deliv-
ers educational material online, encourages students to practice
programming in groups, frees them to learn material at their
own pace, and allows them to demonstrate proficiency at any
time. This model contrasts with traditional course offerings,
which impose a single schedule of due dates and exams for all
students. SPARC allows students to complete courses faster
or slower at a pace tailored to the individual, thereby allowing
universities to teach more students with the same or fewer
resources. This paper describes the goals and elements of the
SPARC model as applied to CS1. We present results so far
and discuss the future of the project.

ACM Classification Keywords
K.3.2 Computer and Information Science Education: Com-
puter science education

Author Keywords
Scaling CS1; Active learning; Gender and diversity;
Self-pacing; Online learning; Collaboration; Peer learning

1. INTRODUCTION

This paper introduces a project that is attempting to signifi-
cantly scale our ability to teach introductory programming to
more students with the same or fewer resources by re-inventing
the way we teach CS1 (CS 112 at George Mason). In addition
to responding to the recent enrollment surge [3] by increasing
the capacity of our CS1 courses, we have additional goals
of retaining more students, increasing learning with less ef-
fort, and reducing or eliminating cheating. The Self-Paced
Learning Increases Retention and Capacity (SPARC!) project
blends self-pacing, separation of practice and assessment, col-
laborative and peer learning, automated grading, and flipped
classrooms to create a more efficient and effective way to teach
introductory computer science.

Uhttp://sparc.cs.gmu.edu/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

L@S’17, April 20-21, 2017, Cambridge, MA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN ?72.

DOIL: 777

George Mason University is a 34,000-student state-supported
university. As at many universities, our introductory com-
puting courses are under great stress. Explosive enrollment
growth has doubled our undergraduate enrollment in the last
five years, with our introductory classes tripling since 2012.
Mason also accepts significant numbers of transfer students,
mostly from community colleges, including 80 transfer CS
majors in fall 2016. Although great news for the labor short-
age in the software industry, this dramatic national enrollment
increase puts enormous stress on universities in a time of
declining state funding.

The increase in enrollment in CS1 and CS2 has not been
matched by increased TA support, so current TAs are over-
loaded. Some TAs report spending as much as 50% more hours
per week than they are officially required to work. Further-
more, there is a ripple effect—more TAs are being pulled into
our introductory classes every semester, leaving less support
for upper-level and graduate courses.

A particular concern is when students fail. From fall 2009
through summer 2015, 37.7% of our students failed CS1 at
least once. We consider a failure to be a C- or below, since
students must have a C or better to take the follow-on course
(CS2). This includes most students who are accused of plagia-
rism. National studies report that average six-year graduation
rates across higher-education institutions is only 59% and have
remained relatively stable over the last 15 years [2]. Requir-
ing students to repeat classes, or worse, leave college without
graduating, has high human and monetary costs. It can even
deprive students of the economic benefits of a college degree,
which can exceed $1 million lifetime and even higher in STEM
fields [1].

In a pure economic sense, failing students are also expensive
to the system as they consume extra resources. If they change
majors, leave the university, or otherwise do not re-take the
course, then the resources they used when taking the course
are lost with little benefit. If they repeat the course, then they
consume course resources twice. Worse, most students who
fail learned part of the course material the first time, so they
are in effect required to learn that material twice, at a cost to
both students and the university.

Computer Science majors at our university are a diverse group
comprised in fall 2015 of 46% European-Americans and 26%
Asian-Americans. Several other ethnicities constitute the
remainder. Although the number of female students is in-
creasing, only 15% of Mason’s CS student majors are female.
Worse, the percentage of female and minority students de-
creases through the four years of college.

???

Mason’s CS1 instructors catch up to 20% of students cheating.
Most are copying programs from classmates or other sources.
This is only what we find—it is impossible to know how many
cheating students are not caught. Cheating imposes huge
costs. Although alerts are raised through automatic similarity
checking programs, instructors still have to deal with each
case individually, spending time and emotional energy. As
enrollment continues to increase, these costs are becoming
unsustainable.

Our novel educational pedagogy is being designed and imple-
mented by a diverse team of faculty and students. The team
includes CS1 instructors, an educational specialist, a program-
mer, our department chair and undergraduate studies associate
chair, and very experienced instructors.

Challenges

The overarching goal of the project is to improve the capacity
of CS1 while maintaining, and hopefully improving, educa-
tional quality. For the purposes of this paper, we define a
traditional introductory CS course as CS1 that lasts for a term
(usually semester or quarter); assigns for-credit programs that
are done out-of-class with specific deadlines, while allowing
little or no collaboration; have class sizes dictated by resources
including classroom size and instructors; and uses most of the
class time for instructor presentations. We present several
challenges faced when using this traditional pedagogy, each of
which leads to unnecessary use of student time and university
resources.

Challenge 1: Using practice problems for assessment
wastes instructor and TA resources. Students need a lot
of programming practice, and they need to be assessed on
their programming skills. Traditional pedagogy mix practice
and assessments by giving students programming assignments
that are used for practice as well as for grades (assessment).
Many students learn programming best collaboratively, where
students work together and help each other develop those skills
[10]. Using the same assignments for both practice and as-
sessment forces students to choose between working alone
(which can lead to unnecessary struggles and less learning)
and working together (cheating). The traditional pedagogy
requires instructors and TAs to spend time searching for and
penalizing such cheating. Besides wasting time, this inhibits
student learning, and can discourage some from pursuing a CS
major, especially under-represented minority and female stu-
dents, who have been found to learn better with collaborative
approaches [7, 9].

Challenge 2: Traditional introductory CS courses do not
adequately support students with diverse learning styles.
It is well known that students learn material at widely varying
paces: some faster than the traditional curriculum and some
slower. However, the traditional pedagogy requires all students
to move at exactly the same pace. This puts slower learners
at a severe disadvantage while making classes painfully slow
and unchallenging for faster learners.

Challenge 3: Traditional introductory CS courses do not
adequately support students with diverse backgrounds.
Students start these courses with dramatically different

amounts of computing knowledge, programming skills, and
general academic knowledge. Because of prior preparation,
fewer students every year need all the material in these courses.
While many students test out of one or both courses completely,
every year hundreds of moderately-prepared students are re-
quired to take an entire introductory course, even though they
only need part of it. Repeating material is not only a poor use
of their time, it is a poor use of university resources. In con-
trast, less prepared students rarely receive enough instruction,
hands-on teaching, and skills practice to master the course
material. These students often fail CS1, not because they can-
not learn it, but because they cannot keep up. Neither student
population is well served by the traditional one-size-fits-none
approach to early CS education.

The traditional model of 3-hour, semester-long, lock-step
courses forces students into boxes that all move at the same
speed, regardless of how fast the students master course ma-
terial. This has been called a “conveyor-belt” or “factory”
education model [5, 6]. The conveyor-belt model often drives
talented students away, and we suggest that it reduces capacity
and throughput in introductory CS classes.

Pedagogical Elements

Our overall goal in this project is to address these challenges

with an approach that reduces overall costs without sacrificing

educational quality. This is accomplished through several

major elements:

1. Separating individual assessment activities from collabora-
tive practice activities (challenge 1).

2. Permitting students to demonstrate mastery of skills at any
time (challenge 2 & 3).

3. Allowing students to pace their own learning, decreasing
the need to retake courses (challenge 2 & 3).

4. Moving lectures online and using contact hours for interac-
tive teaching (challenge 2 & 3).

5. Automating, as much as possible, evaluations of students’
programming skills and computing knowledge (challenge
1).

2. THE SPARC MODEL

We are creating an innovative teaching model of self-paced
introductory programming courses. Students periodically
demonstrate competency with skills, similar to earning martial
arts black-belts. While the self-pacing aspect of martial arts
studies are important, we explicitly downplay competition to
encourage retention and diversity. Flipped learning [11] has
been used successfully in prior introductory CS courses. Our
self-paced learning model adapts best practices from these
different learning paradigms.

The rest of this section describes the major elements in the
SPARC model for teaching.

Practice assignments: The courses is divided into 10 stages.
For each stage, students are given many practice assignments
to be done collaboratively, at their own pace, and using any
resources desired. Students are not just allowed, they are
strongly encouraged to help each other. Instructors, GTAs,
and undergraduate TAs are in classrooms, hold office hours

in public places, and are available through online discussion
boards (we use piazza.com).

Assessments: Since our students learn in a less rigid schedule,
we replace the traditional assessments such as out-of-class
individual programs with anytime assessments. When ready,
students appear in scheduled labs to attempt an assessment.
Our automated system contains about 10 versions of each as-
sessment (a mix of programming assignments and concept
questions), and on each attempt, a student is presented with
one version chosen randomly and without replacement. The
assessments are supervised and use locked-down computers
(no access to the web or other materials unless explicitly au-
thorized). The results are graded immediately with automated
tests and an automated coding style assessment. Students have
up to five chances to pass each assessment, and are not penal-
ized for repeated attempts. To pass the class, students must
eventually pass all assessments with a score of 70% or higher.

Classroom activities: We free instructor resources to teach
more students by using the flipped classroom model [4]. Most
knowledge is delivered online through self-recorded lectures,
tutorials, and other resources. Class time is primarily used to
practice programming, which has three elements. (1) Students
collaboratively practice programming skills with help from
peers, the teacher, and TAs. When possible, we prefer rooms
that have multiple whiteboards, movable chairs, and desks that
facilitate group-work. (2) The teacher and TAs work directly
with students to solve problems, answer questions, and offer
advice. (3) Students work on material and programs related to
their individual current stage, forming groups dynamically of
students at the same stage.

Small group discussions are led by instructors and TAs. Dis-
cussions are often in the form of mini-lectures where the in-
structor or TAs explain core concepts needed to solve the
programming problems. Mini-lectures usually take 10 to 15
minutes and involve small groups—a type of just-in-time learn-
ing [8]. Instructors and TAs sometimes start discussions based
on student questions. Students then collaborate to design al-
gorithms to solve the problems. As students become familiar
with the teaching model, they form study groups by them-
selves.

Assessment labs: Students use our software to register for as-
sessments weekly, where they get a new, random assignment
for their current stage. TAs are present to help students under-
stand the assignment, solve syntax problems, understand the
language, and facilitate record keeping, but not to solve the
problem. After completing an assessment, the automatic grad-
ing program gives immediate feedback in the form of which
automated tests pass and which fail. Students may resubmit
the assignment during lab until they pass it. If a student fails
to pass that assessment during the lab, the instructor or a TA
helps the student understand what was wrong to improve for
the next attempt.

Grading: The overall grade is 70% assessment scores, 20%
final exam, and 10% participation. Students who do not finish
by the end of the term are given an in-progress grade, and have
10 weeks after the end of the term to complete.

Software: To support our educational model, the SPARC
team is developing custom software that will be shared with
the community in an open source model.

3. RESULTS AND PLANS

This project started with a grant in spring 2015 and the team
has developed over 100 practice problems and 75 assessment
problems with corresponding automated tests for CS 112. At
Mason, CS 112 is taught in Python, and includes program-
ming, problem solving, testing and debugging, and the use of
program documentation?. We have taught four sections to a
total of 344 students, including 78 CS majors. CS1 is required
by most STEM majors at Mason, and most CS majors took the
equivalent course in high school. To demonstrate scalability,
we have progressively taught more students and sections with
the same instructor. The SPARC model is allowing her to
teach more students with less effort.

Our most dramatic result thus far is that the number of stu-
dents caught cheating has gone from 10% on average, and up
to 20%, down to zero. We have not caught a single student
cheating. Collaboration is encouraged rather than proscribed,
and assessments are done individually in an environment engi-
neered to make undetected cheating extremely difficult. This
is not just a huge savings in time and effort, we also elimi-
nate the hugely destructive “false positives,” that is, we do not
erroneously accuse students of cheating.

Our completion rates have been at least the same as, and some-
times dramatically more than, the pass rates in non-SPARC
sections. This is partly because of the self-pacing, which is
allowing 10% to 25% of students to finish after the end of
the semester, and partly because the class environment puts
students in a more positive frame of mind. By comparing
final exam scores among courses, we have also verified that
students who pass SPARC sections are learning at least as
much as students who pass non-SPARC sections.

Anecdotally, the instructor reports much more pleasant in-
teractions with students in SPARC sections. She feels more
effective as a teacher, and reports higher job satisfaction. She
feels this model is more stimulating as she was interacting with
students directly rather then talking to them. The TAs report
similar views, and said they enjoy working for a SPARC class
more than other CS 112 classes, and had better interactions
with the students.

We are starting to extend the SPARC model to CS2 (CS 211
at Mason).

We are also computing longitudinal data to assess how the
SPARC teaching model affects students as they progress into
subsequent courses. We are measuring effort by the instructors,
scalability, performance of students, number of students who
finish early and late, and retention to compare with students
who did not participate in SPARC courses. This will be used to
evaluate several experimental hypotheses: (1) SPARC students
learn at least as much as students in our regular courses; (2)
this model allows us to teach more students with less effort;

2A SPARC CS 112 course website can be found at
https://cs.gmu.edu/~kdobolyi/sparc/.

(3) this model helps retain more students; and (4) this model
helps retain more female and minority students.

4. DISCUSSION AND LESSONS LEARNED

We believe the this model of teaching introductory CS courses
has potential to increase capacity, retention, and learning. A
major effect is that it frees instructors and TAs to be feachers,
instead of talkers, graders, cops, judges, and managers.

The effect of the undergraduate teaching assistants (UTAs)
has been enormous and helpful beyond expectations. They
learned, the CS1 students enjoyed having knowledgeable peers
to work with, and they all developed useful collaborative skills.
UTAs are significantly cheaper than instructors and GTAs, so
this is a major accelerator for our goal of scaling our ability to
teach more students with fewer resources.

The SPARC model is increasing our capacity to teach more
students in several ways. Eliminating cheating frees up sub-
stantial instructor time to teach more students. It also means
fewer students have to repeat the course, freeing up even more
resources. Many students can learn CS1 material, but need
more than a semester. In past years, such students failed the
course the first time, and either took it again (expensive for
them and us!), or gave up (also expensive). Every student who
completes past the end of the semester saves money for the uni-
versity, saves instructor time, saves their time, and increases
their confidence. Another savings in instructor time comes
from the collaboration, which in effect lets students teach each
other. Finally, the automatic grading frees up instructor and
TA time. Every hour saved allows the SPARC model to scale
to teaching more students.

We continue to face challenges. We need more classrooms that
facilitate group work, which our university is slowly creating.
Hiring lots of great UTAs is also a challenge that we are still
learning how to solve. We are also staffing labs between terms
(winter and summer break). This is currently funded out of
our grant, but will eventually need to be funded internally.

5. CONCLUSIONS

Ultimate success of this project depends not just on these
innovations working for us, but whether this model is used
successfully elsewhere.

The effect that we are most happy about is that this approach
has completely changed classroom atmosphere and student-
teacher relationships. The students feel the teacher wants them
to learn, and they believe that they can. When students be-
lieve the system is designed to make learning difficult, they
become discouraged, lose confidence, and are more likely
to quit or cheat. The SPARC teaching model disrupts this
dynamic in such a way that we hope will lead to greater reten-
tion, especially among female students and under-represented
minorities.

The SPARC model also dramatically decreases instructor’s
workload. We are currently increasing class sizes without
making instructors suffer or impacting learning. This effort is
already indicating that the SPARC model of teaching can go a
long way towards reaching the goal of learning at scale.

ACKNOWLEDGMENTS

We want to thank all of the UTAs for making this course
possible. We also want to acknowledge support from our
entire department, especially the other CS1 instructors for
allowing us to intrude on their classrooms as observers. This
project is supported by Google through a CS Capacity Award.

REFERENCES
1. J.R. Abel and R. Deitz. 2014. Do the Benefits of College
Still Outweigh the Costs? Federal Reserve Bank of New
York: Current Issues in Economics and Finance 20, 3
(2014).

2. Susan Aud and Sidney Wilkinson-Flicker. 2013. The
Condition of Education 2013. US Department of
Education, National Center for Education Statistics.
NCES 2013-037.

3. L. Barker, T. Camp, E. Walker, and S. Zweben. 2015.
Booming Enrollments - What is the Impact? Computing
Research News 27,5 (May 2015).

4. J. Campbell, D. Horton, M. Craig, and P. Gries. 2014.
Evaluating an inverted CS1. In Proceedings of the 45th
ACM Technical Symposium on Computer Science
Education (SIGCSE ’14). 307-312.

5. Oliver Van DeMille. 2009. A Thomas Jefferson
Education: Teaching a Generation of Leaders for the
Twenty-First Century. TJEdOnline.com.

6. Richard A. DeMillo. 2011. Abelard to Apple: The Fate of
American Colleges and Universities. MIT Press.

7. Julie Krause, Irene Polycarpou, and Keith Hellman. 2012.
Exploring formal learning groups and their impact on
recruitment of women in undergraduate CS. In
Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education. ACM, 179-184.

8. Gregor Novak, Evelyn T. Patterson, Andrew D. Gavrin,
and Wolfgang Christian. 1999. Just-In-Time Teaching:
Blending Active Learning with Web Technology. Prentice
Hall, Upper Saddle River, NJ.

9. N. Orhun. 2007. An investigation into the mathematics
achievement and attitude towards mathematics with
respect to learning style according to gender.
International Journal of Mathematical Education in

Science and Technology 38, 3 (2007), 321-333.

10. Leo Porter, Cynthia Bailey Lee, and Beth Simon. 2013.
Halving fail rates using peer instruction: A study of four
computer science courses. In Proceeding of the 44th
ACM Technical Symposium on Computer Science
Education. ACM, 177-182.

11. R. Rutherfoord and J. Rutherfoord. 2013. Flipping the
classroom: Is it for you? Proceedings of the 14th Annual
ACM SIGITE Conference on Information Technology
Education (2013), 19-22.

	1. Introduction
	Challenges
	Pedagogical Elements

	2. The SPARC Model
	3. Results and Plans
	4. Discussion and Lessons Learned
	5. Conclusions
	Acknowledgments
	References

